Take the number 192 and multiply it by each of 1, 2, and 3:
192 1 = 192
192 2 = 384
192 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n 1?
My Solution
(defun IsPandigital(n)
(let ((IsPandigitalNum T))
(loop for i from 1 to 9
do(if (null (position (format nil "~a" i) n :test #'string=))
(progn (setq IsPandigitalNum nil)
(return IsPandigitalNum))))
IsPandigitalNum))
(defun Eluer38()
(let ((currentPandigital "")
(tempstr "")
(tempPandigital "")
(currentnumber 0))
(loop for i from 1 to 10000
do(progn (loop for j from 1 to 9
do(progn (setq tempstr (concatenate 'string
tempstr
(format nil "~a" (* i j))))
(if (= 9 (length tempstr))
(setq tempPandigital tempstr))))
(if (IsPandigital tempPandigital)
(progn (if (> (parse-integer tempPandigital) currentnumber)
(setq currentnumber (parse-integer tempPandigital)))))
(setq tempPandigital "")
(setq tempstr "")))
currentnumber))
No comments:
Post a Comment